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ABSTRACT

We have developed a 2D axisymmetric, general relativistic code to study inviscid hydrodynamic accretion
flows in a fixed Kerr black hole gravitational field. In this first of several papers documenting our methods
and results, we describe and discuss the hydrodynamic equations in the form used in the code. Certain analytic
solutions for shock tubes and special accretion flows are derived; these solutions will form the basis for code

testing and calibration.

Subject headings: black holes — hydrodynamics — numerical methods — shock waves — stars: accretion

I. INTRODUCTION

There are a variety of astrophysical situations in which
one expects to find fluid accreting onto a black hole. Among
these are the stellar collapse to a black hole, a black hole in a
binary system, and a supermassive black hole in an active
galactic nucleus. In these situations, it is likely that the
accreting matter will have angular momentum. In particular,
a collapsing rotating star may leave behind considerable
material with large angular momentum in a disk or ring around
the newly formed black hole. For a black hole in a binary
system, the matter is supplied by a companion which over-
fills its Roche lobe. The matter is then drawn into a ring or
disk around the hole and is subsequently accreted. For
supermassive holes, entire stars can supply mass for accretion.
If a star ventures too close to such a hole; it can be tidally
disrupted and left as a ring of high angular momentum
matter orbiting the hole.

In each of these cases the subsequent accretion process
is expected to proceed along the following general lines.
Viscous or magnetic torques act to transport angular
momentum outward, causing the bulk of the material to move
inward, gaining internal energy at the expense of the
gravitational field. This increase in energy and the resulting
increase in pressure forces may cause the disk to grow outward
from the equatorial plane, becoming a “fat disk” in which
the vertical dimension of the disk is comparable with its
radial size. Alternatively, the internal energy may be promptly
radiated away, causing the disk to remain thin and roughly
Keplerian. The differences in the observable features of these
two types of flows can be quite significant.

While the processes of accretion onto a black hole have
been described in very general terms, little is known of the
specifics. Just what is the expected efficiency for each of the
accretion scenarios? Are the most efficient processes likely to
occur in astronomical regimes? Do stable accretion structures,
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such as fat disks, form in realistic flows? The consequences
of the assumptions which go into these models have yet to be
fully explored. A better understanding of black hole accretion
will be required to describe the energy generation processes
for quasars and jets. In addition, black hole detection may be
made possible by determining what observational features are
unique to black holes in binaries as opposed to other compact
objects.

To study the process by which a fluid is accreted onto a
black hole in complete generality, one must solve the
equations of motion for the fluid and the Einstein equations
(see, e.g, Smarr and Wilson 1983 or Evans 1983). The
problem is greatly simplified by assuming that the total mass
of accreting matter is small compared to the mass of the hole.
One can then calculate the fluid dynamics in a fixed back-
ground metric. The problem is still analytically untenable
unless one makes a series of very limiting assumptions. The
use of a numerical computer code to solve the fluid
equations allows us to be much less restrictive in seeking
solutions to the dynamic fluid equations.

The study of the subsequent fluid flow in a Kerr metric
after the collapse of a star was the motivation for the
first such hydrodynamic accretion code (Wilson 1972). In this
work, fat accretion disks were discovered numerically,
demonstrating that even using inviscid hydrodynamics and a
simple inflow with angular momentum, a complex structure
involving shocks, circulation, and pressure support develops.
This emphasizes the need for a greater understanding of the
accretion process such as can only be achieved by examining
solutions to the fluid equations obtained by numerical means.

Our goal is to develop an explicit Eulerian hydrodynamics
code to be used as a research tool for studying fluid Aow
in axisymmetric stationary metrics. The code must be
sufficiently “rugged” to allow easy adaptation to a wide
variety of problems involving viscous heating, heat transport,
energy loss by radiation, shocks, and other nonideal fluid
phenomenon. In this paper we will discuss the numerical
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considerations only in the most general form. We shall
concentrate on understanding the equations of hydrodynamics
analytically in the form to be used in the code. Analytic
solutions for fluid flow in the Kerr metric will be compiled
and examined for use as code test problems. In our next
paper we will describe various differencing schemes and
discuss the results of the extensive finite difference and code
testing which has been done.

II. DESCRIPTION OF EQUATIONS

a) Variables, Coordinates, Units

In this section both the fundamental and some derived
variables are displayed as they will be used both in the
code and in the analytic development below. Additional
variables will be defined in § IIb when they arise in context
within the equations of hydrodynamics.

First consider the fluid variables. The fluid we wish to study
will have a 4-velocity U* (¢ =0, 1, 2, 3) at each point which
i1s the d-velocity of an observer comoving with the fluid
at that point. Express the 4-velocity in units of the speed of
light ¢. At this same point there are three scalar functions;
the first of these is the baryon rest mass density p(g cm™3).
Consider only a one-particle fluid and allow no nuclear
reactions. This allows the baryon mass density and the baryon
number density (often written n by many authors) to be used
interchangeably. The other scalar functions are the specific
internal energy ¢ (ergs g~ ')}—the temperature in a perfect
gas—and the isotropic pressure P (units of pe—energy
density). The pressure P is connected to the other variables
by an equation of state P = P(p, ¢). We will often wish to
consider the ideal gas equation of state given by P =
p(I’ = 1). where T' is the ideal gas adiabatic exponent. The
relativistic enthalpy is written 1 = 1 + ¢ + P/p. The quantity
ph is the total inertia-carrying mass energy. Note that for the
ideal gas equations of state ph = p(1 + I'¢). For a comparison
of our notation to that of other authors, see Smarr, Taubes,
and Wilson (1980).

We use geometric units in which G = ¢ = M = 1 (M = black
hole mass). To convert back to conventional units simply
multiply the geometric value by dimensionally correct factors
of G, ¢, and M. Note that since the mass of the accreting
fluid does not contribute to the dynamics, the density is
essentially scale-[ree. To describe an astrophysical problem in
conventional units, relate the geometric density and energy
to a referent value, such as the matter density and energy
at infinity.

Next. let us define the important relativity variables. First
the “relativistic gamma,” often written v, here written W:

W=(1-Vi) 2, (la)
V* shall be referred to as the “transport velocity”:

w
Uk ==V (1b)

Next consider the “lapse function” « = (—g")”™ V2. Proper
time along the unit normal from one spacelike hypersurface
at coordinate time t to a second such surface at coordinate

time t + dt is given by dt = adt. Together « and W make up
respectively the total “gravitational” and *Doppler” redshift

factor W/x = U', the contravariant time component of the
fluid 4-velocity.

Now consider the other components of the black hole
metric g. The metric is assumed to be stationary and
axisymmetric. It is completely specified by the mass of the
hole M, and its angular momentum per unit mass a (Kerr
geometry—assume charge Q on hole is zero). Express the
metric in Schwarzschild-like (Bover-Lindquist) coordinates.
The line element is:

ds? = g, dt* + 2g,,dtd¢ + g,,dd* + g, dr* + ged6® . (2)

Choose the spacelike signature (—, +, +, +).

The square root of the determinant of the four-metric is
written (—g)'/2. The square root of the determinant of the
three-metric is written ;! 2. The two are related by the lapse

function:
NET EE NG (3)
Use the usual forms for derivatives. The covariant derivative

is signified by a semicolon or a “del” operator with a greek
index; i.e.,

V, T = T, )

signifies a covariant derivative with respect to f. Similarly,
the ordinary flat-space derivative is signified with a comma
or a latin index.

b) Equations of Hydrodynamics
The above variables give the complete state of a uniform-
composition fluid system with no magnetic fields. Now
assemble the equations which determine the evolution of such

a fluid system. First there is the normalization of the
4-velocity:

UrU, = —1. (5)

Next there are two fundamental conservation laws. These are
(1) the conservation of baryon number

Vi(pU,) =0, (6)
and (2) the conservation of stress-energy
Vu(T")=0. ™M

The tensor T** is the stress-energy tensor to be discussed
below. This second conservation law can be broken into two
familiar forms: the conservation of energy

uv'T,=0, ®)
and the conservation of momentum
h, V. T* =0, ©)

where h_, is the spatial projection (into the fluid rest frame)
tensor defined by

h,=U,U, +g, . (10)

The stress-energy tensor for an imperfect fluid is defined
(Misner, Thorne, and Wheeler 1973; MTW) as

T = p(1 + YUV + (P = [0 — 20" + g*U” + U* |
(11)
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The scalar functions n and ( are the shear and bulk
viscosities. The scalar 6 is defined as

0="U°,. (12)

It describes the divergence or convergence of the fluid world
lines. The symmetric, trace-free, and spatial shear tensor ¢**
is defined by

o" = HU*, h" + U, ™) — 30R . (13)
The vector ¢* is the energy flux vector.

These equations will describe the flow of an imperfect
fluid for a fixed metric in complete generality. For the time
being, consider an important subset of these equations, namely
those describing a perfect fluid, by which is meant a fluid for
which entropy is conserved along fluid lines. Entropy is
changed in an imperfect fluid by viscosity and heat flow;
exclude such terms from T**, leaving the perfect fluid
stress-energy tensor:

T = phU*U" + Pg*" . (14)

We now write the perfect fluid equations of hydrodynamics
in the form in which they will be studied numerically (see,
e.g, Wilson 1978). The law of baryon conservation can be
written

1
T_‘;%(p\/—gU“PO- (15)
The metric is time independent by assumption. Now use the
variable V* as defined in equation (1). This V* is the
“transport velocity” of the fluid as measured by the observer

at rest with respect to the coordinate grid points. Using this
definition, write

20l /sWYH =0 (16)
7

Now define D = pW and obtain

8/D) + \[a(u\/;V) 0. (17
The energy equation is dealt with in a similar manner.
Begin with

U [V*(phU,U,)+ V, P]=0. (18)

Remove the term V“(pU ) using baryon conservation; the
remaining terms can be smplnﬁed to

V4(peU,) + PV*U, =0, (19)
Now define E = pcW to obtain

0,E AES/y V) + P&(W) + —

P aw vy =

\f Jr

(20)

For momentum conservation, take the divergence of the
stress-energy

V,(phU*U, + Pg*) =0 (1)
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and use the definition S, = phWU, to write
V“
f 8,78, V") (5‘7)—VVP=0. (22)

Note that §' = phWU*' = phW?/x. Then
S V¥/a =S, S*/aS" . 23)
It is easily shown that
r,'s,s" =155"d,9,, = —15,8,0,¢9"" . (24)

After rewriting and taking the spatial component v = j, the
momentum cquation becomes

1§
378 V) + ad; P + 3 Sa . (25)

al(Sj) 2 s

/—
AN

Our perfect fluid equations are now complete.

¢} Newtonian Limits

The close relationship between the form of our equations of
general relativistic hydrodynamics and the Newtonian hydro-
dynamics equations is made obvious by considering the
Newtonian limit. In this limit we have:

Us > (LVY), Wo1, hol,
S,—pU,,
\ﬂ — flat space determinant (of the three-metric) . (26)

D-op, E-pe,

That is, we consider slow motions (relative to c), thermo-
dynamically nonrelativistic (energy densities < c?), in a weak
gravitational field. The first two equations follow immediately:
baryon conservation and energy conservation:

.p+J pr (27)

2pe) + ﬁ ey V) + \—ﬁ/ aS/yV)=0. (28)

For the momentum equation, first take the line element in
the weak field limit as (MTW, eq. [16.2a])

ds? = —(1 4 20)r* + (1 - 20)Mr? +r?dQ*,  (29)

where @ is the ordinary Newtonian potential. The Einstein
equations reduce to A® = 4np. Furthermore, the last term in
the momentum equation becomes:

15°8° 1 1{V\2
‘578191/1 = —EP(—zaJ‘D)‘E(?) p(—20;®)

x p0;® . (30)

Additional accelerations, e.g., centrifugal, are also present in
the derivative of the metric. For now, consider only the
gravitational acceleration, i.c., neglect the terms involving U?,
U, and U®. This weak field hmlt will be examined again in
the discussion of stationary disks below (§ VI, eq. [81]). Using

the gravitational acceleration, the momentum equation in the
weak field limit is:

a(pV)+f 7PV V) + 0. P+ p2;®=0. (31)
7
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In the weak-field Newtonian limit the baryon conservation
equation is recognized to be the usual continuity equation;
the energy equation consists of transport of internal energy
and the PdV work. The metric term in the momentum
equation has revealed itself to be the gravitational acceleration.
The close formal analogy between our equations and the
usual Newtonian equations of hydrodynamics means that we
can cxpect a similar analogy between the techniques developed
to difference the Newtonian equations and the techniques
to be used for the fully relativistic problem.

IlI. METHOD OF SOLUTION AND CODE DEVELOPMENT

a) Some General Code Features

We have listed the equations describing the fluid system;
now we discuss the general philosophy and technique of the
approach we use to numerically study this system. We wish
to make clear the qualities desired in the code and the way
in which these qualities are reflected in code strategy. This
section is the first step in the complete documentation of
our work. Such documentation is necessary not only to be
able to properly interpret results, but also to take advantage
of the new developments in numerical technique which may
appear in the future.

Since we wish to study as wide a variety of physical
systems as possible, the code must have sufficient generality
and adaptability. Some of the fluid physics expected in
accretion flows includes shocks, vortices, subsonic and super-
sonic flows, viscous effects, heating, cooling, angular
momentum transport, and magnetic fields. The physics
involved in such phenomenon is idealized and included in
the differential equations through the addition of new
terms, e.g., viscosity terms. When such terms are to be
included in the difference equations, they should not require
the development of an entirely new code. Rather, the new
work should augment and build upon the old. Just as new
physics is modeled by additional terms in the differential
equations, we wish to include more physics by simply adding
terms to the difference equations when possible.

Besides providing ease in applying new physics, a sufficiently
adaptable code permits quick changes in finite difference
methods. Not only does this allow for new or improved
schemes to be immediately tested and used, but the comparison
of results from schemes differing by only one technique or
term is an excellent method of understanding exactly what
features arise from the numerics and what represents physics.

These considerations require our two-dimensional (2D) code
to be time-explicit; that is, each new time level is calculated
using the values at the previous time level. The advantage
of an explicit code is its simplicity. A time-implicit code
involves obtaining the simultaneous solutions of all equations
for the next time level. Further, the implicit difference equations
are often difficult to formulate and code. In one spatial
dimension, such codes are now in a state of mature develop-
ment (e.g., Norman and Winkler 1983). However, in two spatial
dimensions, such as we are studying, much more work and
the use of supercomputers are required for time-implicit
schemes.

An explicit code can use operator splitting (Wilson 1978)
to solve one portion of the system of equations at a time.
Finite difference methods are easily changed through the
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substitution of several lines of code; the whole program need
not be rewritten, The major drawback to a time-explicit scheme
is that it is Courant-Friedrichs-Lewy (CFL) limited; that is,
the time step taken at each time level must be sufficiently
small so that At < Ax/c, where Ax is the grid size and c is
the local speed at which signals propagate through the grid.
In fluid flows c is generally the sound speed. In relativistic
problems ¢ will be the speed of light since the function
value obtain at each spacetime grid point is dependent on all
the pointsin its backward facing light cone. Hence calculations
involving long time scales (very many At) can be quite
expensive to run; further, a decrease in the grid size {Ax) by a
factor of 2 involves a corresponding decrease in time step
and a total increase in run time by a factor of 8 (two
factors of Ax because of two space dimensions; one factor
of Ax from the CFL limit on At). Nevertheless, there are
many problems which can be effectively investigated by an
explicit code. Further, careful and extensive testing of explicit
codes can lay the groundwork for future more accurate
implicit codes.

We wish to study two-dimensional flows and such
phenomena as vortices; the code must therefore be Eulerian,
ie, fixed grid, rather than Lagrangian in which the grid is
tied to fluid elements. In more than one dimension, grid
distortion and the tangling of grid lines make the
Lagrangian scheme difficult to use. The main calculational
difference between the Eulerian and the Lagrangian approach
is that an Eulerian scheme must calculate the transport of
fluid in and out of the fixed grid zones. By making these
“transport” terms as accurate as possible, the disadvantages
of the Eulerian scheme are minimized. Much space will be
devoted to discussion and testing of finite difference transport
schemes in the next paper in this series.

Shocks often play a key role in dynamic fluid flows. Such
was the case in the first numerical study of 2D black hole
accretion (Wilson 1972); and now, as then, we choose to
employ an artificial viscosity Q to deal with shock dis-
continuities. An artificial viscosity has two functions to
perform. One is to permit resolution of the shock on a finite
difference grid by being sufficiently dissipative to spread the
otherwise discontinuous shock over several grid zones. The
other function is to model the conversion of kinetic energy
into internal energy. Von Neumann and Richtmyer (1950)
introduced a scalar Q which is added to the pressure in the
stress-energy tensor; in this way it functions in the manner
of a bulk viscosity term (see eq. [11]). We choose to use an
artificial viscosity to handle shock discontinuities because of
its generality. It does a quite adequate job of modeling
shocks and it does not add significant numerical dissipation
to the equations in regions away from shocks; it is set equal
to zero unless there is local compression. In any case, all
numerical schemes are inherently dissipative to some degree—
one simply needs to understand and account for any effects
which arise from unwanted numerical diffusion. Also important
is that the use of Q is a general approach to the problem
of shock dissipations, making it easier to eventually make
use of an arbitrary equation of state and the inclusion of
some form of dynamic viscosity. This will be necessary to
study the transport of angular momentum and heating in
accretion disks. In our second paper we will present extensive
shock tube tests involving Q.



300 HAWLEY, SMARR, AND WILSON

b) Code Calibration

In this section the philosophy of code testing and
calibration is briefly discussed. Code development is a
continuing process in which one maps out the desired
equation-solving strategy, implements that strategy through
coding, then compares results with intended goals by using
checks for accuracy with known solutions, checks for self-
consistency, and checks with physical intuition. Just as the
experimental physicist must calibrate his laboratory equipment
in order to interpret the results, the numerical theorist must
similarly calibrate his code. This involves code testing. Such
tests include studies of finite difference schemes in highly
idealized, analytically clear-cut problems—e.g., shock tubes,
advection of wave packets, simple accretion flows, etc.
Particularly important are tests in the context of the problem
one wishes to solve; in our case this means obtaining the
special accretion flows which are analytically solvable. The
goal of these tests is to gauge the magnitude of diffusive
error inherent in the difference scheme, ensure self-consistency
in the numerical formulation of the differential equations,
demonstrate reproduction of analytic solutions, and check on
the numerical simulation of each piece of physics as modeled
by the equations.

We describe below the analytic solutions to a number of
test problems both of a general nature and in the context
of black hole accretion. In each case, the physical assumptions
involved will be made explicit, the analytic solutions will be
written down, and the specific aspects of the problem which
make it suitable for code testing will be discussed.

IV. ONE-DIMENSIONAL SHOCK TUBES

a) Newtonian Shock Problems

We begin our discussion with the well known nonrelativistic
test problem, the 1D Riemann shock tube. In this problem,
hot dense gas on the left (fluid /) is separated by a membrane
from cool, rarefied gas on the right (fluid r). At t=0 the
membrane is removed and fluid [ pushes fluid r farther to
the right, causing a rarefaction wave to move at the local
sound speed back to the left through fluid . The inflow of
fluid ! into fluid r causes a shock to travel to the right
through fluid r. There are therefore five distinct regions in
the flow (see Fig. 1). From left to right there is the undisturbed
fluid I, the rarefaction wave, a region of constant velocity
and pressure which features a contact discontinuity separating
regions of different density, then the shock, and finally the
undisturbed fluid r.

The analytic solution to this shock tube problem requires
the use of (1) the characteristic curves of nonlinear waves and
(2) conservation laws as realized in the shock jump conditions.
The value of this problem as a code test also arises from these
same features. It can test (1) how well a finite difference
scheme advects a nonlinear wave and (2)if conserved quantities
are actually conserved. It can also show how well the shock
dissipation mechanism (e.g., artificial viscosity Q) provides the
correct jump across the shock. A comparison of several finite
difference schemes on the same problem is especially useful
for displaying features in a solution which arise solely as a
result of the numerics, e.g., the relative amounts of artificial
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FiG. 1.—A spacetime diagram for the Riemann shock tube; the world
lines show the location of the head and tail of the rarefaction wave, the
contact discontinuity, and the shock. There are five distinct Auid states in the
How.

dissipation and postshock oscillation (see, for example, Sod
1978).

We briefly describe here the method for obtaining the
analytic solution to the Riemann shock tube problem in
Newtonian hydrodynamics. Although this solution is in the
literature, it may not be familiar to some relativistic
astrophysicists, so we outline the derivation here for
completeness. A Newtonian flow is characterized by a specific
internal energy much less than the rest mass energy, so our
shock tube analzysis will be valid only in cases in which the
inequality ¢ < ¢* holds. The solution presented here is from
Courant and Friedrichs (1976), to which the reader is referred
for a more complete discussion of shocks and related
phenomena.

Consider the equation of baryon conservation in the 1D
Newtonian limit:

ar(p) + ax(pv) =0, (32)
and the momentum equation in the zero-field Newtonian limit:
OlpV)+ 0, (pV - V)+ 0, P=pd,V +pVo . (V)+0,P=0,

(33)
using baryon conservation.

This set of equations has two characteristic curves and two
characteristic parameters. A characteristic curve of a set of
differential equations is the locus of points along which some
parameter of the problem, called a characteristic parameter,
is constant. On these curves we may define a one-parameter
ordinary differential equation (ODE); the set of both ODEs is

equivalent to the original problem. For characteristic
parameters « and § we have

a a
LV=—"20,p, 0,V="0,p. 34
0 ] P P (34)

Note that for this set of nonlinear equations, the sound
speed, a,, is not a constant. Now assume that we have an
isentropic flow, that is, for entropy s, Vs =0 everywhere.
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Then the characteristic equations can be integrated to yield

=t 0yt )
for
_i' e _ (P
MM—Wwp—Lﬂw-

Assume ¢ =0 for p'=0. The functions r(f) and o(«) are
called the Riemann invariants of flow. Now further restrain
the problem by assuming a polytropic equation of state,
P = Kp", and sound speed given by a,> = ['P/p. Then

2 2 -
¢lp) =g a=p—7 VKTV, (36)
and the Reimann invariants are
|4 d> .
r=5+ ra_s  constant along d—: =V+a,, (37a)
14 d
o=5- l_a_’ [ constant alongd—f =V —-a. (37b)

These functions are constant along the appropriate character-
istic. A fluid flow for which r or ¢ remains constant is
called a simple wave. The rarefaction wave in our shock tube
problem is such a simple wave; here ¢ is constant since the
wave is moving backward through the grid, and the appropriate
characteristic equation is equation (37b). Given an initial state
Vo and (a,)o, we may therefore write

2 2
l—-_l(as)0=V—I—_1

A simple wave starting from an initial state at rest at x =0
is a centered simple wave; the characteristics all fan out in the
(x, t)-plane from the origin. The rarefaction wave in the
Riemann shock tube is a centered wave and as such it may be
described by the equation x = (V — a,)t. Consequently V — g,
is a function of x/t, and the complete solution to the wave
problem is therefore a function of the parameter x/t. Such a
solution is called a similarity solution, and for a polytropic gas

as . (38)

0

a, =12 S+ (1= k) (39)

V= (1—p@®)x/t — (a)o] , (40)

where y? = (I — 1)/(T" + 1). From this we can obtain p and P
since a, = a,(p) and 4, = a,(P) for a polytropic gas.

The solution for the shock must be obtained by different
means. The shock is a discontinuity separating regions of
constant velocity and density, ¥, p;, to the right and V;,
P2, to the left. Each of these regions is separately isentropic,
but entropy s is discontinuous across the shock. In fact,
by the second law of thermodynamics, the entropy must
increase across the shock. Since the shock is inherently
discontinuous, we must use conservation laws to relate the
two states, 1 and 2. First, the mass flux into the shock
must equal that leaving by the conservation of baryons.
Similarly, momentum and energy flux must be conserved.
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For a shock front moving with velocity V, we have the
following jump conditions (Courant and Friedrichs 1976):

[e(V -W)]=0, (41a)
(Vv - V)*+P]=0, (41b)
[PV +e)(V —V,)+ PV]=0, (41c)

with [f]= f. — /-, where f, and f_ are the function f
evaluated on either side of the shock discontinuity. Given the
state on one side of a shock, the state on the other side is
completely determined by the jump conditions and the
specification of one additional value, e.g., shock speed V..
In fact, for a polytropic gas, the specification of P, and V,
in the preshock region yields a curve in the (P, V)-plane
which describes the possible states P,, V, behind the shock.
Recall that since a, = a/(P), a similar relationship may be
constructed for the rarefaction wave.

To solve the Riemann shock tube, first obtain the curve
of possible states for the rarefaction wave using the initial
values of P, and V| in the hot dense region to the left of the
membrane. Next obtain a similar curve for the shock using
P, V in the cool region to the right. The intersection of these
two curves yields the pressure and velocity in the intermediate
region; this in turn determines the complete shock tube
solution through the use of the rarefaction wave equations and
the jump conditions. :

To illustrate, we obtain the solution to the shock tube
problem used by Sod (1978). First some discussion of units
is in order so that the reader will be able to immediately
compare our results to those of other authors. We take the
units used in Sod’s paper and show how the same shock
problem can be posed in our units. In Sod’s units the
velocities are normalized to the sound speed; our velocities
are normalized to the speed of light. Sod’s initial conditions
are Pp=1,p=1¢=25 V=0.and P, =0.1, p, = 0.125,
¢, =2, and ¥, =0, the adiabatic exponent is equal to 14.
Since a shock is characterized by the ratios across the shock
in pressure, energy, and density, to convert to our units we
need merely preserve these ratios while choosing values of P,
p, and ¢ so as to ensure a Newtonian flow, ¢ < ¢2. One such
set of values is Pi=1, p,=10° ¢=25x10"5% ¥ =0;
P,=0.1,p, =0125 x 10%, ¢, =2 x 107%; V. = 0. To convert
Sod’s velocities to our units, renormalize using the sound speed
expressed in units where ¢ = 1:

oot V. @)
(askod as

We now set aside for the moment specific values and
continue the analysis for initial states I and r. Given these
states and using the jump conditions, we have for a shock
wave moving to the right into fluid r an equation giving
the velocity behind the shock as a function of V,, P,, and the
postshock pressure P:

V=K+w_awjgzqﬂr{ )

P+ 4

This equation is the curve in the (P, V)-plane which
describes the possible postshock states. The rarefaction wave
moving to the left is described by the equation V —gq, =
Vi — (a,). Substituting in the polytropic equations for a, and
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F1G. 2—Curves in the (P, V' )-plane, one describing possible fluid states in
the rarefaction wave and the other the possible postshock states. The
intersection of the two curves is the solution for the intermediate state in the
shock tube problem.

expressing velocity as a function of pressure, we get

(1 _ “4)1/2 P,”‘Z”
#2 p,l/’Z
This is also a curve in the (P, V)-plane, here describing
the possible values of P and V in the rarefaction wave.
The intersection of these two curves gives the value of pressure
and velocity in the intermediate region, P, and V,, which
connect the right moving shock with the left moving

rarefaction wave. For our problem, ¥, =V, =0 and we may
write:

V=V-

(P wer _ Py (44)

1/2

(1-p2)?
For the particular values of P and p given above we obtain
P, =0.303 and hence V,, = 2.93 x 10> (see Fig. 2).

Having obtained the pressure and velocity of the
intermediate state m, calculate the remaining hydrodynamic
values. First obtain the postshock density by combining the

jump conditions to obtain
r+<t p,
A)F7)

P2 _ r+1p,
p, \IF-1P,
For this problem, p, = 0.266 x 10°.

The solution for the contact discontinuity is especially
simple. It moves from its initial position at the membrane at
t =0 to the right at velocity V,. Behind the contact is the
region described by the rarefaction wave equation. Expressing
this equation in terms of P and p, we obtain

r-1(V-Vv)\]|¥"
”="'"|‘+ 2 (())] !

C—1(V = ¥)|e
P=P, |1+ m .
”[” 2 ((as)m)]

These equations yield the solution for p and P in the wave
back to the undisturbed region at the left. The value p,, is
obtained from the polytrope relation p,, = p(P./P))"'". For
this example p,, = 0.426 x 10, This completes the solution

Vm=(Pm—Pr)

(45)

(46)

(47)
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to the Riemann shock tube problem and the results are
displayed graphically in Figure 3.

b) Relativistic Shock Problems

Relax the assumption that the specific internal energy must
be small, ¢ < ¢ and allow non-Newtonian hydrodynamic
flows. In the 1D special-relativistic zero field limit, the
equations of baryon, energy, and momentum conservation
become

8.D) + 8,(DV) =0, (48)
O(E) + 0(EV)+ PO, W + PO(YW)=0,  (49)
8,S+0SV)+d.P=0. (50)

The variables used here are the same as defined above in
§ Ila. V is again the coordinate velocity related to the fluid
4-velocity by U* = W(L, V') (x = 1).

The advantage of having special relativistic shock problems
in the test ensemble is that, in conjunction with the non-
relativistic problems, they allow isolation and testing of the
specifically relativistic terms. These include the renormaliza-
tion of the 4-velocity, calculation of V and W, the pressure
terms in the energy equation which involve W, and the role
of artificial viscosity Q in special-relativistic flows. The goal
of these tests is to single out and examine the unique
numerical difficulties which arise from these terms.

Asin the nonrelativistic case, a Riemann shock tube problem
may be formulated and a solution obtained. The procedure
is exactly analogous to that described above except that the
relativistic Riemann invariants and jump conditions must be
used ; they are derived by Taub (1948), and their consequences
and some solutions are investigated by Johnson and McKee
(1971), Eltgroth (1971), and Thorne (1973). The relativistic
shock tube is one of the problems used in our code testing;
specific solutions are obtained by Centralla and Wilson (1983).
We confine the present discussion to the qualitative differences
between the relativistic and the nonrelativistic shock tube.

For the relativistic 1D flow, Taub obtains the relativistic

| Riemann invariants {compare eq. [35]):

1+V 1/2 1 VI/Z
r=¢+m&t7) ,a=¢—hhtV) , (51)

where r is constant along the curve

dx/dt = (a, + V)/(1 + a,V) (52)
and ¢ is constant along
dx/dt = (a, — V)/{(1 — a,V). (53)
Here q, is the relativistic sound speed defined by
a,* =dIn (ph)/d In (p) . (54)

In the equations for the characteristic curves, the previous
Galilean sum or difference of sound speed and fluid velocity
(egs. [37a, b]) has been replaced by the relativistic sum or
difference. Similarly, the quantity ¢ is defined as before except
that the sound speed is relativistic and the density is replaced
with the total energy density in the pressure formulation:

s d
¢=f%dp=f%;f

(53)

o
e v
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F1G. 3.—Solution to the nonrelativistic shock tube problem at t = 5000 for (a) velocity, (b) density, (c) specific internal energy, and (d) pressure. The spatial
location of the shock and contact are x, = 63.1, x_ = 50.1; the rarefaction wave runs from x = 16.7 to 34.1.

The relativistic jump conditions are also just the relativistic
generalization of the Newtonian conditions already discussed.

In the frame in which the shock is at rest we have (Thorne
1973):

[pWV]=0, (56a)
[phWV? + P] =0, (56b)
[phWV]=0. (56¢)

The use of these jump conditions is greatly simplified by

neglecting the preshock pressure, often a very good assumption
in the relativistic shock.

An example of a special relativistic Riemann shock tube
solution is shown in Figure 4. The pictured problem is a
I' = 5/3 gas with D = 100, E =200 (¢ = 2) on the left and
D =1, E=10"° on the right. The intermediate pressure and
velocity are P, =1384, V, =069, W, =138 (mildly
relativistic). Density D(=pW)=3.55 at the end of the
rarefaction wave, and D = 6.85 in the postshock region.
Note that the velocity is no longer linear in the rarefaction
region; this is a consequence of the relativistic velocity
addition. The shocked region in fluid r becomes narrower

in width because of Lorentz contraction; the apparent
difference between shock velocity V¥, and the intermediate
velocity V,, in the laboratory frame becomes smaller as both
values approach c. The jump in density across the shock is
larger than predicted for a Newtonian shock. Taking the limit
of negligible preshock internal energy, the laboratory frame
Jjump conditions predict a compression ratio

B2 T~ w,—-1).

ot e b o A Ul (57)
The ratio (" + 1)/(T" — 1) is the maximum expected from
Newtonian theory. The shock velocity in the frame of the
unshocked fluid (here the laboratory frame) is given by

_ L+ [TAT = D)Wy Vu*| Pa 5
"o + [TAT = )W, P, | WV, (58)

Vs

As In the nonrelativistic case, the relativistic shock tube
allows testing of nonlinear wave advection and conservation
laws. In the relativistic case, it is particularly useful to single
out for study the shock jump conditions in a second test
problem. For this problem the initial conditions consist of cold
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matter at constant density p, with a relativistic velocity V.
This fluid is run into a reflecting boundary (wall) at one
end of the grid. This causes a shock to form which then
moves back through the grid, leaving behind hot, dense
material with zero velocity in the postshock region. In this
problem the jump conditions alone determine the state behind
the shock, p,, €¢,. The compression ratio is the same as that
given in equation (57). The specific internal energy can be
determined from the jump conditions or by simply equating
kinetic energy per nucleon in the preshock region with
internal energy per nucleon behind the shock:

W +e)=1+¢,. (59)

For our wall shock problem, we have taken the limit ¢, =0,
consequently ¢, = W — 1. The shock velocity is obtained from
the jump conditions:

P2t
‘/:=V (_—— ).
l/ p W

A typical example of this type of problem is given in Figure 5.
In this example we consider a T =4/3 gas with initial

(60)
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conditions V, =0.832, D, =1 (p; = 0.556), W =180; the
postshock values are D, = p, = 5.67, E = 4.57 (¢ = 0.80).

V. RADIAL ACCRETION ONTO BLACK HOLES

Now consider the analytic solutions for specific accretion
flows onto black holes. These solutions are obtainable by
making a set of quite restrictive assumptions which greatly
simplify the differential equations. They are excellent for code
testing since each represents a specific limit of the general
physical problem for which the code was designed.

The first analytic solutions considered are those for
steady-state radial accretion of an ideal fluid onto a Kerr
black hole. Consider the fluid evolution equations; use the
assumptions “steady state” and “radial” to eliminate all
partial derivatives except &,. Then the density and energy
equations are

oDV /) =0, (61)
SUEV'/7) + Pe (W /yV)=0. (62)

Since the metric is known and fixed, and U, = U, =0,
knowledge of V’(r) yields a solution for D(r) and E(r). V"(r)

20 T
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F1G. 4.—Solution to the relativistic shock tube problem for {a) velocity, (b) density, (c) specific internal energy, and (d) pressure. The spatial location of the
shock and contact are x, = 86.3, x, = 80.0; the rarefaction wave runs from x = 8.0 to x = 57.0.
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shock is x; = 75. The shock is moving to the left with velocity V. = 0.178.

is in general obtained from the momentum evolution
equation; here, however, it is obtained directly as a
consequence of restrictive assumptions. We study two such
restrictions: (1) the case of radial accretion with negligible
pressure (“geodesic flow”), and (2) the Bondi radial flow
solution with a sonic point.

a) Geodesic Flow

First we consider the radial accretion of noninteracting
test fluid particles or “dust.” The assumption is that the
elements of the accreting fluid fall along geodesics. In
axisymmetric, steady-state flows the binding energy per baryon
hU, is conserved. Hence for dust particles, the gravitational
binding energy U, will remain constant. Since U*U, = —1,
V*(r) is now determined in terms of the input constant U,
and the known metric functions. In general, for Uy = Uy =0,

Ur grr -1 - g"U 2y 172
= ?ﬂ = g"U, ( grr ) )
Free-falling fluid particles are by definition noninteracting,
This means that the fluid pressure force must be entirely

r

(63)

! negligible and the ratio E/D = ¢ = P/[p(I" — 1)] must be much
less than one. Note that since P =0 is not required, the
PdV terms in the energy equation, while negligible in
determining the function V*(r), can still be important in
determining E(r) and should be retained.

We now have a one-parameter (U,) family of solutions of
the hydrodynamic equations for a given Kerr (a/M) hole with
the restriction E/D < 1. To explicitly exhibit the solution, we
use equation (63) to get V'(r). With V'(r) known, the
density equation can be immediately integrated:

DV'ﬁ = constant = d . (64)

To integrate the energy equation, rewrite it as the sum of three

exact differentials:

1 IR r-1) ,
Ea,E+Vr\/;a,(vﬁnwﬁwa,(wﬁm

=3, mE+3,In(V/y)+T-1)3In(/yVWw)=0.
(65)
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Vol. 277

This equation is valid for an ideal gas [P = gl’— 1)E/W]

with a constant binding energy U, (U'= 1/«*|U,|). Now
rewrite and integrate to obtain:
ear— 1
- (6)
7V

where e is the constant of integration.
We now present a particular solution of this one-parameter
family for a Schwarzschild black hole: the marginally bound

case U, = — 1. In this simplest example we can analytically
solve for D(r), E(r), and V'(r) as:
D(r) = dfir?{(@mir)(L = 2m/r)]?) (67a)
E(r) = o/[(/2mir ) (1 — 2mfr)T* 4], (67b)
V(r)=/2mfr(1 — 2mjr), (67¢)
S(r) = [D(r) + TE(r)\/2m/r/(1 — 2m/r) . (67d)

The functions V*(r), D(r), and E(r) are shown in Figure 6.
Several features of these functions are common to all accretion
problems. First while the proper velocity U’ approaches c as r
approaches 2m, the coordinate velocity V" goes to zero due
to the “redshift factor™ U' (time dilation). At the same time
the functions D and E are diverging, again due to the same
redshift factor. Here the same number of baryons is found in
an increasingly smaller coordinate volume as r approaches 2m.

As a test problem the radial infall of dust involves checks
on the radial transport terms, geometric terms, and the
general-relativistic redshift factors, velocity normalization, and
to a lesser extent the pressure terms in the energy equation.
More importantly, this problem provides an excellent way of
exploring code dynamics in a very noncomplicated context;
the problem is run as an approach to a steady state analytic
solution rather than simple maintenance of that solution.
This test involves for the first time the outer grid boundary
and the horizon as an inner boundary in the same type of grid
and with the same code on which more complex problems
will later be run.

b) Sonic Point Flow

Now drop the assumption of geodesic motion everywhere
and allow E to be of the same order as D. The analytic
solution to the equation is now the generalization of the
Bondi accretion problem to the Schwarzschild metric. This
problem has been investigated in detail (Michel 1972;
Begelman 1978; Ray 1980) for the case of an equation of
state given by the ideal gas law P = pe(I' — 1). Other
investigators have solved the radial accretion problem in
astrophysical contexts, including additional effects such as
radiation transport, more general equations of state, and
magnetic effects (Shapiro 1973a, b, 1974; Blumenthal and
Mathews 1976; Mézaros 1975). The most complete study of
spherical accretion into black holes is presented in a series
of papers by Thorne, Flammang, and Zytkow (1981) and
Flammang (1982, 1983).

Following Michel, we define T = P/p = (I' — 1)c and write
the law of baryon conservation in the form

U =C,, (68)
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where n is the polytropic index [=1/(" — 1)] and U is the
radial component of the four velocity U*, for which
U*U, = —1. Next the energy flux equation T*., =0 is
written in the form:

[1+ (1 +n)TP=2mr+ (U)P]=C,. (69)
These two equations will determine the two unknowns U’
and T at each r provided the constants C, and C, are
known. Michel obtains these constants by considering the
asymptotic limit to obtain C, in terms of T, and by using
the “critical point” analysis to determine C,. This analysis
involves differentiating equations (68) and (69) to obtain
(foru=1U")

du u?
0O=—|V2e

u [ S - 2mir +u?)
dr m
il ] 74 . —

* Tl =2myr + uz)] (70)

with sound speed
Vs2=dln(P+p+pe)_1.

dlnp

The critical point occurs where the factors in the brackets
vanish, i.e., when

u?=m2r,,

VA =ul/(1-3u?).

(71)
(72)

This is the Schwarzschild generalization of the Bondi critical
point (Bondi 1952) which simply states that given an accretion
rate, the flow must go from a subsonic to a supersonic regime
at a specific radius r,, which is determined entirely by the
constants of the motion, if the flow is to be continuous, smooth,
and steady state. Here we see this expressed as the statement
that a given choice of constants C, and C, yields a unique
solution for u(r) and T(r). '

Rather than obtain a solution in terms of asymptotic
thermodynamic values, we select instead a desired value of r,.
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This then determines u, and T, through the equations
m
utz = 2—'-“ N (73)
(1+n)T, 2 u’
—_—— =V = 74
[l+(1+n)T] ° (1-3u?) (74)

Thus the choice of r, in equations (71) and (72) selects both
C, and C, determining a unique set u(r) and T(r). T(r) is
obtained by writing

u(r)= C/Tr?, (75)
[l+(1+n)T]2(l—sz+;%)=C2. (76)

For I' = 5/3 this yields a fifth order polynomial for 7. Having
obtained a solution for T(r) and u(r), we can then obtain the
value of each code variable. First

p_(T "
po \Tp) °

p = (po/T")T" = KT". (78)

The constant K determines the adiabat. Here for simplicity
choose K = 1. Next

(77)

hence

T=£=p£(l"—1)=E(I"—1)’ (79)
p p D
where
D=pU2r and E =peU'x;
and since
pUr=cC,, D=%, (80)

U’ is obtained using the normalization of the 4-velocity.

Figure 7 shows the functions V'(r), D(r), and E(r). Note
in particular that V” is reduced below its free-fall value by the
pressure support the now hot (E ~ D) gas provides.
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FiG. 7.—Functions V(r), D(r), and E(r) for radial transonic inflow of fluid with nonzero pressure
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Figure 8 is the function U,(r). In the geodesic case this
function was constant. Here it increases monotonically from
its asymptotic value of ~ —1. Marginally bound fluid with
significant pressure is heated by compression as it falls at the
expense of the gravitational field. Note that this shows that
even in a supersonic flow such as this it is not necessarily a
good assumption to consider the fluid to be free-falling. The
validity of that assumption is determined by the ratio of E/D,
that is, by the relative importance of pressure forces.

The sonic point flow provides the same code checks as
dust infall plus more stringently testing the role of the pressure
terms in determining the flow; in particular the pressure
acceleration term is now important. The inner and outer
boundaries must also be handled in a more general fashion.
However, the most important feature of this test problem is
the demonstration of the code’s ability to find the sonic point
in an accretion flow. The location of the sonic point is an
issue of some importance in general flows, for example in the
case of fat accretion disks (see Liang and Thompson 1980;
Abramowicz and Zurek 1981).

V1. TWO-DIMENSIONAL ACCRETION FLOWS—FAT DISKS

Since the accretion flows to be studied will in general
involve angular momentum, these flows will be two-
dimensional, often with U°® on the same order as U". It would
therefore be valuable to have a 2D test ensemble as well as
a radial one. Unfortunately, 2D flows are not easily solvable
by analytic means. However there is an analytically described
2D structure which can be adopted as a test problem. This
is the pressure-balanced fat disk.

We now review the theory of stationary fat disks, but done
in our variables. There are essentially three accelerations per
unit mass acting upon the fluid: pressure gradients, gravita-
tional accelerations and centripetal acceleration. Referring
back to the momentum evolution equation (eq. [25]), we
see thatin a stationary model the time derivative and transport
terms vanish. The term VP is the pressure gradient;
therefore, the last term involving gradients of the metric must
hide the gravitational and centripetal acceleration terms. To
see where they are hidden, we take the weak-field Newtonian
limit of this latter term.
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For the stationary model in the weak field Newtonian
limit we can extend our earlier analysis (eq. [29]) to include
the angular momentum:

aiP — 1 1 2 dd _ _1 2 (i
—56,(2@)—§(U¢) 6,g —0,(1) 2(U¢) 8, RZ s

(81)
where R is the distance from the axis of rotation (cylindrical
coordinates). Thus we have obtained the usual Newtonian
equations for hydrostatic equilibrium of a fluid with angular
momentum U, in a potential ®:

op_ (00 U2
R -P\GRTRT)

opP
ez

a0
=Paz

(82)
The solution of these equations will yield a stationary fat
disk structure in which the gravitational, centrifugal, and
pressure gradient forces are all in balance. This weak-field
analysis highlights the essential physics, but in what follows
all our work will be fully relativistic.

Such a relativistic disk structure was discovered numerically
by Wilson (1972) in his dynamical study of fluid flow in Kerr
space. He found that cold material with high angular
momentum falling toward a Kerr hole was not immediately
accreted; rather, a hot shock region (fat disk) formed (see his
Figs. 2g and 2h). The standing shock at the outer boundary
of the disk slowly grew outward as material continuously
fellthrough it. In addition a circulation current was established
behind the shock, driven by the entropy gradient across the
shock. Thus, this was a quasi-stationary fat disk with U,, U,,
and U, all nonzero. This rather complicated structure showed
for the first time that stationary fat disks around black holes
can form.

Later investigators discussed the fat disk analytically.
Rotating fat disks with no internal motion (U, = U, =0)
were described analytically by Fishbone and Moncrief (1976),
by Abramowicz, Jaroszynski, and Sikora (1977, AJS), and
by Kozlowski, Jaroszynski, and Abramowicz (1977, KJA).
Lynden-Bell (1977) emphasized the natural presence of
“funnels” (the boundary of the fat disk) along the hole axis
in general relativity. These provide a means to produce and
collimate relativistic jets generated near the hole. He
showed that one can find analytically the shape of this funnel
for a stationary fat disk. Here we rework these authors’
results in terms of our variables.

Consider a perfect fluid in a known stationary axisymmetric
metric g"” in which we neglect the self-gravity of the fluid.
The conventional way to yield the balance of pressure
gradients, gravitational acceleration, and centripetal accelera-
tion is to assume the flow is purely azimuthal and stationary
and to use the relativistic Euler equation (see, e.g., Smarr,

Taubes, and Wilson 1980, eq. [19]) written in the rest frame
of the fluid:

pha,=V,P, (83)

to derive the equation of force balance. This is straightforward
since in the case of no internal motion we can write:

U, = U(1,0,0, -1),
U* = UY1,0,0,Q),

(84a)
(84b)
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with U*U, = —1 yielding U, as a function of | and Q:

U = _(ng — 9u9s0)/(Gos + 2lgs + )zg”) : (85)

Here [ is the angular momentum per unit mass defined to
be —U,/U, and Q is the angular velocity defined as U®/U".
As KJA point out, such definitions have the advantage over
the use of U, as the specific angular momentum since / is
conserved along streamlines for this 4-velocity whereas U, is
conserved only for the case of dust, as was previously pointed
out, The separately conserved quantities are hU, and hU,.
Now using the definition of the 4-acceleration,

a,=UV.U,, (86)
we find the master force balance equation to be

V.P Qv, i
7,1—'— ‘—V,-ln(—U,)+ 1 _Ql,

(87)

which is the same as equation (7) of AJS.

However, our code can find much more general time-
dependent flows with internal motion (U, and U, nonzero).
Our time-dependent Euler equations (eq. [25]) reduce to their
simple analytic result for the case of time-independent
azimuthal-only flow:

V.P = —12:g"S,S,/S' (88)

(since &,S; = V' =0, i =r, 0). This is the strong field version
of the weak field limit given above (eq. [81]). One can see
how the more general flows with U,, U, nonzero naturally
emerge from our time-dependent equations.

Yon Zeipel's theorem is a powerful tool for understanding
such flows. In a general flow where P = P(p, ¢), such as our
code can handle, the surfaces of constant !/ and constant Q
do not coincide. If the equation of state is simplified to a
barotropic one, i.e., dependent only upon the total mass-energy,
P = P(p + pe), then the constant-! and constant-Q surfaces
coincide (see Abramowicz 1974; Seguin 1975). If one chooses
the particular barotropic condition Vs = 0, L.e., iscatropic, then
these level surfaces of constant ! and Q also coincide with
surfaces of constant AU, the conserved angular momentum
per baryon. This latter very special case is the one which 1s
obtained when one writes the equation of state as P = Kp",
where Vs = 0.

The result that the surfaces of constant ! and Q coincide
for an equation of state P = P(p + pe} allows AJS to solve
equation (87), writing

j:%=_ln(—U,)+ln(—U,)in+F(l), (89)
where
F(’)=I, 1§-l-d;zl'

The subscript “in™ refers to the inner boundary of the disk.
By requiring the equation of state to be barotropic. von
Zeipel's theorem guarantees that all our quantities of interest
will be functions of one variable, here the variable 1.
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The total potential P is defined as

oQdl
1-Qi

in

YW, =In(-U) = In(-U), - | (90)

Thus, the specification of the function Q(!) completely
specifies the model, given an equation of state P(p + pe).
Note, however, that the model will not be physical wherever
the lines of constant potential ¥ are open onto the hole.
In such an instance U cannot be equal to zero and material
will flow into the hole. The same is true in the case where
the potential lines are open to infinity except that the fluid
will then be unbound. Thus, the analytic formulation gives
the solution in only part of space—inside the closed potentials
of the fat disk. To obtain the fluid flow in all of space, one
must also cover the unbound areas where the analytic
formalism breaks down. This is why a numerical study of these
fat disks is very fruitful even in the stationary fat disk case.

We now choose some very specific models out of the
collection described by equation (89). First we choose, as do
AJS, to model disks with constant specific angular momentum,
that is, I = constant. This implies F(I) = 0, so we can simplify
equation (89):

i

ph= —ln(—Ut)+ln (—Ul)in - (91)

Physically, such a rotation law represents a vortex with the
angular velocity becoming arbitrarily large near the axis.

Next we choose a polytropic equation of state, P = Kp".
If we require K to be constant throughout the entire disk,
then an isentropic model is obtained. This is a great simplifica-
tion and will definitely not hold in a realistic, dynamic flow;
in such flows entropy gradients and shocks can play a major
role in establishing circulations like the kind observed by
Wilson (1972). Here, however, this assumption simplifies the
integration of the left-hand side of equation (91). Using the
first law in the form

0= Tds=dh—dP/p, (92)
we find

Pdp
[t JURSLIOM 93)

0

where h is the enthalpy. We may then equate In (- U,)=
—In (k).

The code uses an ideal gas equation of state with
P = pe(I' — 1) which is more general than the polytropic
form assumed here in the initial conditions. To construct
a model in terms of our code variables from their U,, write

1 1
£=I—"(—U,—1)' (94a)
Since
P=pel —~1)=Kp", (94b)
then

o= [E(r _ 1)] r-1

% , (94c)
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where K is arbitrary. Thus for

Ufr,8)= —(|g" — 2lg" + Ig**|)~ 12 (95a)
we have
D(r, 6) = [ﬂ—e)(%‘—l)] e, b)
E(r, 0) = e(r, 0)D(r, O)W(r, 8) , (95¢)
Ss(r, 0) = (D + TEX=)U(r, 6) , (95d)
with
W(r, 8) = aU'(r, 9), (95¢)

using equation (94a) for E(r, 0).

Now specification of K and ! determines a model. The
analytic value of each code variable at each grid point is
determined from these equations, and those data are used as
the initial conditions for the code. In addition we require
that in the region where U, < —1, U, be equal to —1 and D
and E be some negligible value. This simplifies the models
so that we study only the bound disk structure. The model
of a fat, pressure-supported disk can now be evolved.

The evolution has two major goals. First, it should test the
code by seeing how stationary the matter remains in the
bound region. Second, it will find the actual flow lines of the
matter (U,, U, # 0) when there are unbound regions (open
potential lines$ and the analytic method is useless. We have
chosen three models which represent the three types of
solutions one obtains, namely (1) the specific angular
momentum is less than that of the marginally stable Keplerian
orbit, | <l, (see AJS); no fluid element has sufficient
angular momentum to prevent accretion onto the hole;
(2) the specific angular momentum is sufficient to keep some
but not all of the bound fluid (U, > —1.0) off the hole,
I <l,, but less than the angular momentum of the
Keplerian marginally bound orbit, /.,; and (3) the specific
angular momentum is sufficiently large that all the bound
fluid is supported off the hole, I > I_,. Analytic density plots
for these three examples are shown in Figure 9.

In the first case above, with constant angular momentum
I < I, while there is no analytic solution for the fluid inflow
which will result, one qualitatively expects certain features.
The fluid should “drain” out of the disk smoothly; initially
when the infall velocity is small, ! should remain constant
and the potentials should maintain the same shape. The fluid
infall velocity vectors should be perpendicular to the local
potential. Finally the equidensity contours should continue to
coincide with the equipotentials.

The second case, I, < < I, is similar to the first in that
there will be dynamic flow. However, here a portion of the
fluid will have sufficient angular momentum to remain orbiting
the hole. Further, all accretion into the hole will be
constrained to flow through the narrow spout at the potential
cusp.

The third case, I > 1, is especially simple: U, and U,
should remain zero and ! constant. This is a steady state
problem in which a delicate balance between pressure,
gravitational, and centrifugal forces must be maintained.

These test problems employ the full 2D nature of the code;
angular boundary conditions, 2D operator splitting, and
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angular momentum transport are involved for the first time.
Also these cases provide the opportunity to investigate
numerical diffusion. Such diffusion leads to the artificial
smoothing out of a distribution, e.g., a density function, on a
finite difference grid. One case in particular is the artificial
separation of angular momentum and density caused by
numerical diffusion (see Norman, Wilson, and Barton 1980)
for a discussion of this problem and its role in the study of

L< dms

Lors< L < dmp

F1G. 9.—Density plots for constant angular momentum fat disks orbiting
a black hole. These models were obtained by assuming that U, = U, = 0.
Three cases are illustrated: (@) | < lpy, (B) bny <1 < L, (€) 1> 1y (see text).
These curves are generated [rom initial conditions on a finite-difference grid,
and consequently some discretization error is present. Most apparent are the

“pincers” on the hole in case b. The analytic curves actually merge onto
the hole axis.
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2D protostar collapse). The role of these tests, in particular
the steady state models, is in part to investigate these
phenomena for various finite difference schemes. Stationary
models with large gradients in angular momentum are also
quite useful. They can be easily constructed by specifying
some function / along the equator, with dg! >0 (stability
criterion, see Seguin 1975), and solving for the potential.

VII. CONCLUSIONS

We have presented a systematic development of the
general-relativistic equations of hydrodynamics as we will
difference them. Some analytic solutions to these equations
have been derived so as to provide a complete background
against which to develop and calibrate our 2D code. These
exact problems will be numerically solved in our next paper,
providing both code testing and comparison of several
numerical methods.
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